Dimensions of Anisotropic Indefinite Quadratic Forms Ii

نویسنده

  • DETLEV W. HOFFMANN
چکیده

Let F be a field of characteristic different from 2. The u-invariant and the Hasse number ũ of a field F are classical and important field invariants pertaining to quadratic forms. These invariants measure the suprema of dimensions of anisotropic forms over F that satisfy certain additional properties. We prove new relations between these invariants and we give a new characterization of fields with finite Hasse number, the first one of its kind that uses intrinsic properties of quadratic forms and which, conjecturally, allows an ‘algebro-geometric’ characterization of fields with finite Hasse number. We also construct various examples of fields with infinite Hasse number and prescribed finite values of u that satisfy additional properties pertaining to the space of orderings of the field.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensions of Anisotropic Indefinite Quadratic Forms II To Andrei Suslin on the occasion of his 60th birthday

The u-invariant and the Hasse number ũ of a field F of characteristic not 2 are classical and important field invariants pertaining to quadratic forms. They measure the suprema of dimensions of anisotropic forms over F that satisfy certain additional properties. We prove new relations between these invariants and a new characterization of fields with finite Hasse number (resp. finite u-invarian...

متن کامل

Dimensions of Anisotropic Indefinite Quadratic Forms, I

By a theorem of Elman and Lam, fields over which quadratic forms are classified by the classical invariants dimension, signed discriminant, Clifford invariant and signatures are exactly those fields F for which the third power IF of the fundamental ideal IF in the Witt ring WF is torsion free. We study the possible values of the uinvariant (resp. the Hasse number ũ) of such fields, i.e. the sup...

متن کامل

Approximating the Distributions of Singular Quadratic Expressions and their Ratios

Noncentral indefinite quadratic expressions in possibly non- singular normal vectors are represented in terms of the difference of two positive definite quadratic forms and an independently distributed linear combination of standard normal random variables. This result also ap- plies to quadratic forms in singular normal vectors for which no general representation is currently available. The ...

متن کامل

On Indefinite Binary Quadratic Forms and Quadratic Ideals

We consider some properties of indefinite binary quadratic forms F (x, y) = ax +bxy−y of discriminant ∆ = b +4a, and quadratic ideals I = [a, b−√∆ ]. AMS Mathematics Subject Classification (2000): 11E04, 11E12, 11E16

متن کامل

Identification and signatures based on NP-hard problems of indefinite quadratic forms

We prove NP-hardness of equivalence and representation problems of quadratic forms under probabilistic reductions, in particular for indefinite, ternary quadratic forms with integer coefficients. We present identifications and signatures based on these hard problems. The bit complexity of signature generation and verification is quadratic using integers of bit length 150.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001